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PREFACE 

I , .  This report i s  a summary and exposition of research e f fo r t s  by the 

Communication Theory Group at  Northeastern University during the period 

from December 1, 1963 t o  March 31, 1967, mainly under the Contract No. 

AF19(628)-3312. 

support has been received from NASA under the Grant No. NGR-22-011-013. 

From September 1, 1965 t o  March 31, 1967, p a r t i a l  

Over half of the studies have been presented as sc ien t i f ic  reports, 

while the rest involves work which i s  s t i l l  being pursued and extended. 

The former studies are sumarized i n  par t  two and t h e  la t ter  are discussed 

i n  more detailed manner i n  par t  one. 

attached . 
A l i s t  of publications is  also 

The bulk of the research work l i e s  i n  the area of coding and signal 

design f o r  communication, f o r  data transmission and f o r  digi ta l ized guidance 

control. 

interpolation of sampled f'unctions and optimum equalization of random 

channels. 

A small part  i s  devoted t o  assbciated problems such as optimum 

Much of the work described i n  t h i s  Final Report i s  not considered 

closed. Research i n  these and Elated fields is being continued under 

Contract No. ~19628-67-C-0112, which became effective on April 1, 1967. 
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ABSTRACT 

This report describes four  current research ef for t s :  arithmetic codes, 

non-binary orthogonal codes, error-correcting schemes, and filtering of 

PAM signals for  a randomly selected channel. 

Seven Scientific Reports are summarized. The subject matter of these 

linear product codes, detection Of reports includes the following topics: 

d i g i t a l  data, optimum interpolation of sampled functions, adaptive band- 

width compEssion, and the design and shaping of analog signals. 
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PART I REFOF?l! ONFGZENT STUDIES 

CHAFTFIR I 

ARITHMETIC CODES 

N. T. Tsao-Wu and S. H. Chang 

Introduction 

Arithmetic codes, a lso denoted as AN codes and l inear  residue codes, 

are based on ordinary arithmetic operations. 

controlling computation errors  i n  d i g i t a l  computer and i n  data transmission. 

They are prac t ica l  i n  t h a t  encoding and decoding operations can be performed 

using general purpose computers. This class of codes was  first investigated 

They are usefb lboth  i n  

by Diamond’ and Brawn.* Their studies w e r e  followed by Petersod,  Henderson 4 , 
Berstein and U m 5 ,  Chien6, Stein7 and Mandelbaub8 Most of the resu l t s  have 

been i n  the area of correcting and/or detecting burst errors. 

c lass  of l inear  residue codes that corrects random er rors  has been discovered 

independently by Mandelbaum*, Baz.rows9, and t h i s  group. 

Recently, a 

I n  t h i s  chapter, after br ie f ly  s ta t ing some useflrl concepts i n  elementary 

Number Theory, we shall discuss a class of binary cyclic* arithmetic codes. 

An expression f o r  the minimum distance of such codes i s  established and the 

result i s  extended t o  ternary codes. We then present attempts t o  calculate 

the m i n i m  distances of a much more general class of arithmetic codes which 

slandelbaumls paper and a discussion by Chamg and Tsao-Wu are t o  appear 
i n  the IEEE Transactions 3n Information Theory. 

*me non-zero code words form a cyclic multiplicative graup. 
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correct multiple errors. 

burst-error-correcting arithmetic (Fire) code proposed by Mandelbaum are 

found. 

Finally, bounds on the minimum redundancy f o r  the 

lk f in i t i on  

Ari thmetic  codes are, i n  general, of the form AN + B, where N i s  the 

number t o  be coded and A and B are posit ive integers. 

of a set of integers 0,1,2,...,ni,. .. i n to  the set of integers 

B, A+B, 2A+B,...,Ani+B,... . 
radix r number system, i s  a code word. 

numbers q, n2,..., we have 

It is  a mapping 

Each of these integers, when represented i n  

I n  par t icular ,  when B = 0, fo r  

i f  (nl + "2 + ...) i s  a l so  a number i n  the set under consideration. 

implies that the sum of the coded numbers i s  the coded number of the sum 

and, i n  t h i s  sense, it is a l inea r  code. 

This 

To recover the coded number, we first take the residue of the  received 

number modulo A. It it is a non-zero residue, an e r ro r  has occurred; i f  

it i s  zero, there has been no error ,  o r  an undetectable e r ro r  has occurred. 

This j u s t i f i e s  the name, l i nea r  residue code. 

The arithmetic weight W(A) of any number A i s  the  least number Of nOn- 

zero terms necessary t o  express A i n  the form 

-2- 



The arithmetic distance, D(A1, A2), between any two numbers, A 1  and &, i s  

defined t o  be the arithmetic weight of t he  magnitude of t h e i r  difference; 

t ha t  is, 

D(A1, = W(IA1 - &I)* 

Hereafter, the  term w e i g h t  o r  distance w i l l  mean arithmetic weight o r  

arithmetic distance respectively, unless otherwise stated. 

Some Basic Concepts from Number  the^?$-^,^ 

(i) Principal Division Identity f o r  the Integers 

If a and b are integers, b 4 0, then there a m  

unique integers s and t such that a 6 sb + t and 
0 < t < b o  

( i i )  Representation of a Wber i n  ~ i x  r 

L e t  r be a posit ive integer greater than 1. Then 

each posit ive integer A can be expressed Uaiqpely 

where 0 S ci 5 r-1 (i P O,l,...,n-l) and 

0 < Cn C r-1. 

(iii) Canonical Decomposition of a Number i n t o  a Product of Prims 

Every integer A(> 1) can be expressed as a product of 

primes and unicpely, i f  one disregards the ordering of 

prixnes, as 

-3- 



i n  which pl, p 2 , . . . , ~  are different primes and 

(21, %,...,CYk are positive non-zero integers. 

( iv) The Euler Function 

The Euler function $(A) i s  defined f o r  all positive 

integers A and repmsents the number of numbers of 

the sequence O,l,...,A-l which are re la t ive ly  P r i m  

t o  A. 

the number A, it can be shown that 

In  terms of the canonical decomposition of 

and i n  particular 

(v) Congruence Relations 

If a and b are integers, then a = b(m0a m )  means that 

(a-b) i s  divis ible  by m o r  t ha t  a is  congruent t o  

modulo m. I n  other words, there is an integer k such 

that a-b LII Ina. 

(a) Congruence classes (mod m)  are members of 

a set co, c1,...,c m-1 such that fo r  each 

R P O,l,...,m-l, where R i s  called a residue, 

CR consists of all the integers km + R, 
k = 0, 21, f2,... . 
The set of these congruent classes (mod m)  

i s  a ring with respect t o  addition and 

multiplication. 

and only i f  m i s  a pr im.  

(b) 

This r i n g  i s  a f i e l d  if 

-4- 
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, -  

(c) One can form a reduced system of residues, 

(mod m)  by taking one residue from each 

c lass  which contains numbers t h a t  are 

re la t ive ly  prime t o  m; there are #(m) i n  

number. 

If a and m are re la t ive  prime, and x runs 

through a reduced system of residues modulo 

m, then ax a l s o  runs through a reduced 

system of residues modulo ms 

(d) 

The Theorems of Euler and Fermat 

(a) For m > 1, a and m are re la t ive ly  prime, 

we have 

a@(m) 3 l(mod m). 

This i s  the Euler's theorem. 

If p i s  a prime, and a is  not divis ible  

by p, we have 

(b) 

ap-l f l(mod p)  

o r  
ap a(mM p) 

fo r  all integers a. 

theomm. 

This i s  the Fermat's 

(vii) The Multiplicative G ~ U P  G(A) 

The set of al l  integers sIDaUer than and re la t ive ly  

prime t o  a given integer A forms a commutative 

group G(A) with respect t o  multiplication modulo A 

-5- 



and, by (iv),  there are  #(A) i n  number. kt 

s E G(A),  and e be the smallest integer such 

that 

se 2 l(mod A) ,  

then e i s  called the exponent of s mod A and 

i s  denoted by e(s,A). 

using notation i n  (iii) 

It can be sham that, 

I n  particular,  i f  A i s  of t h e  form 

power of a prime), then there ex i s t s  elements g 

i n  G ( A )  such that e(g,pm) = @(pm), and they are 

called primitive elements. I n  addition, G(A) i s  

a cyclic gruup i n  which g i s  called a generator, 

i.e., all the elements of G may be expressed as 

d i s t inc t  powers of g. 

(i.e., a 

The Binary Cyclic Arithmetic Code 

Consider the AN code i n  which A i s  chosen such tha t  

* where B i s  a prime with 2 as a primitive root. 

A (or  A - 1 )  can then be obtained from the periodically recurring sequence 

The binary expression fo r  

i n  the fract ional  expansion of B since 

1 - = O.al~...&B,l 
B 

A = 2B-1 - - 5 = al+..%-l . 
. 

1 1  
B 

%his B i s  d i s t inc t  from the B of page 2. 
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This sequence is  called the wotient-sequence. 

kmma 1 

Each element of the qyotient-sequence can be expressed 

i n  the form, P (2i mod B) mod 2. 

Proof - 
From the decimal expansion of B, using 2 as radix, one 

gets,  f o r  i 5 B-1, 

i mod 
B 

are the integer and the dedimal part of where q and 

the ratio.  "he integer part i s  

o r  
2' - 2' mod B = ( a l a p . . ~ )  B. 

Now, noting tha t  B i s  811 odd number, and taking congruences 

modulo 2 on both sides, we have 

There are B-1 non-zero code words expllessing i n  binary digi ts  the 

numbers AN, fo r  N P 1,2,...,B-l. 

are cycl ic  shif'ts of each other. 

A (2i mod B). 

a t o t a l  of B code wofis. 

A l l  code words are B-1 digi ts  long and 

That is, they are a l l  of the form 

The all-zero code word i s  also added t o  the code giving 

-7- 



Property of the Quotient-Sequence 

(i) The f i r s t  half of the sequence is the complement of the 

second halfp d ig i t  by digi t .  

Le. ,  a i + "  B - l = 1 ,  1 s i ~ B - L  2 
i + -  

2 

or 

Indeed i f  

B divides (2B-1 - 1) and B does not divide 

then 

i.e. , 

hence 

(ii) There 

B must divide (2y + 1) , 

(1) i s  proved. 

are equal number of ones and zeros. Th i s  f o l l a r s  from 

(i), since (B-1) i s  even. 

Theorem 2 

, B i s  a prime greater  eB-1-1 
B 

For a cyclic AN code, where A = 

than 3, the distance is  given by 

"1x1 denotes the integer par t  of x. 
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Intervals  of Ni I 

N i  = (2i) mod B (1 2 ... x-1 x)  

A* 1 (1 0 ... 1 0 )  

A- 3 ( SEIZE ) 

1 -  

I1 I11 

( x+l x+2 ... 2x-1 2x)  (2x+l 2x+2 ... B-2 B-1) 

( 1 0 . . e  1 0 1 (1 0 ... 1 0 )  

( 0 1 ... 0 1 )  ( St3-E 1 

Proof 

Any prime B 7 3 is congruent t o  either 1 or  2(r -1) modulo 3, 

i.e. , 

e i the r  x = -  B-l , an even integer 
3 

or  X I I -  B+' , an even integer. 
3 

We shall consider the first case only. The second case can 

be proved i n  a similar manner. 

loss of generality we list A - 1  and A 0 3  i n  the ordering of Ni 

rather than i n  the  familiar ordering of i i n  Table I. 

shall first shuw that, i n  general, the d ig i t s  of A93  differ 

from those of A - 1  only within the central  interval. 

kt Ni = (2i) mod B. Without 

We 

In  the in te rva l  I, the d ig i t s  of the sequence i n  A . 3  remain 

the same as those i n  A . 1  because both 3*[ (2i) mod B] and 

(2i)  mod B are less than B. Therefore, in t h i s  interval  

[(2i) mod B] mod 2 = [ ( 3 0 2 ~ )  mod B] mod 2. 

-9- 



This congruence i s  again satisfied i n  the in te rva l  111, where 

However, i n  the in te rva l  11, 

B < 3 I ( 2 i )  mod B] < 2B, 

the above congruence relat ion i s  no longer sat isf ied.  

follows t h a t  the non-zero d i g i t s  of A02 occur over the in te rva l  

I1 w i t h  a t o t a l  number of x digi ts .  

minimum weight of A-2, it i s  suff ic ient  t o  show that these 

d ig i t s  are not pairwise adjacent i n  the ordering of i. I n  

other words, it i s  suff ic ient  t o  show tha t  the following 

adjacency condition for  any two numbers within t h i s  in te rva l  

N, and %, cannot be sat isf ied.  

It 

For t h i s  number t o  be the 

where we take Na > 

This is  evident from the f ac t  that  

and i b  > ia without loss  cf generality. 

whi le  

% - Na g X-1 

x+l L Na s 2x. 

Thus the minimum weight of A02 i s  x = 

are cyclic shifts of A.2 ( in  minimum weight representation) 

. Other code words 
3 

-10- 



and have the same m i n i m  weight.* 

the code, i s  therefore, given by 

The minimum distance of 

o r  

Combining, we have 

J 

x r -  f o r  the second case. 
3 

.=[?I. 
The code i s  capable of either (I) detecting x-1 random arithmetic e r rors  

x-2 or  (ii) correcting - and detecting x-2 f 1 random arithmetic errors.  
2 2 

Extension t o  the  Ternary Cyclic Code 
B-1- 

The ternary cyclic AN code i s  obtained by selecting A = , where 

B is a prime, w i t h  3 as a primitive root. The m i n i m  distance i n  t h i s  case 
r - i  

is  found t o  be 2 Ly] . The proof is  similar t o  the argument used f o r  

the binary case. Therefore, only the additional steps required i n  the proof 

w i l l  be stated i n  detai l .  We require some preliminary remarks t o  establish 

a r e su l t  needed i n  proving the expression f o r  the m i n i m  distance, namely, 

those primes, having 3 as a primitive root, B = 4x-1 satisfy B = 1 mod 3 

and those of the form B = 4x+1 must sa t i s fy  B = 2 m o d  3. 

Note that  half of the code words a~ represented by t h e i r  negative * 
complements i n  th i s  mapping, i.e., A*N+ A {-(B-N)]. 

-11- 



EE?Li 
3 i s  a quadratic residue of B, i f  and only if 

ei ther  B = 1 mod 3 and B 3 1 mod 4 

o r  B z 2 mod 3 and B = 3 mod 4. 

An equivalent statement i s  that 3 i s  a quadratic residue of 

B i f  and only i f  the prime B is i n  the form of 12.1 * 1, i 

being any r ea l  integer. 

Proof - 
We make use of the def ini t ion of Iegendre symbol and the 

quadratic Reciprocity Law i n  Nutuber Theory. If B = 121 1, 

By defini t ion of the Legendre symbol, 3 i s  a quadratic residue 

of B. 

To show the converse, i f  3 i s  a quadratic residue of B, one 

can show by exhausting a l l  possible folms of B t h a t  only 

B - 121 5 1 satisfies 

whi l s t  B P 5 mod 12 and B P 7 mod 12 do not. 

-12- 



Lemma 4 

If any prime B i s  of the form 121 

posit ive integer, then 3 cannot be i ts  primitive root. 

This follows immediately from the above lemma. 

1, i being any real 

&?si 
Each element i n  the quotient-sequence can be represented 

i n  the form of ~ ( 3 ~  mod B) mod 3, where c = 2 when B is  

i n  the form 4x-1 and c = 1 when B i s  i n  the form &x+L 

Proof - 
From the division algorithm, the ith remainder of - 1 is  

B 
given by N i  1 3' mod B, or  as a recursive re la t ion  

following i n  the same manner as i n  kmma 1. 

shown that 

It can be 

q = 2(3i mod B) mod 3 f o r  B = 4x-1 

o r  ai  = (3' mod B) mod 3 f o r  B P 4x+L 

Theorem 6 
B-1, 
B The distance of the  ternary cyclic code, w h e r e  A = 

B-1 is 2 - if B p 4~+1, and i s  2 if  B = 4~-1. 
4 -4 

W e  shall prove this  theorem f o r  the case B - 4x+L 

that B = 2 mod 3, x = 1 mod 3 and = (31 mod B) mod 3. we 

follow the general scheme as i n  Theorem 1 by listing A.1  and 

A.4 i n  the ordering of N i ,  N i  = 3i mod B, as shown i n  Table 2. 

It follows 

-13- 



r 

N i  (1 2 3 - 0 0  X) 

A - 1  (1 2 0 0 . .  1) 

Am4 ( No Change ) 

~ . 3  (0 o ... 0) 
4 

By the s m  reasoning as i n  Theorem 2, we note tha t  there are 

2x non-zero terms f o r  A03 belonging t o  the in te rva l  

L = {x+1, ...,2x') and M LI {2x+1, . . . ,3x)  and show tha t  any 

number L;t i n  L and any number Mk i n  M cannot be adjacent i n  

the ordering of i. 

prove tha t  the numbers with coeff ic ients  52 are not adjacent 

i n  the ozdering of i. 

Iet two such typ ica l  numbers be 

Within the in te rva l  L, we only need t o  

(x+l x+2 o m .  a) (2x+1 2x+2 m a 0  3) (3+1 3x+2 4 ~ )  

(2 0 1 ... 2 ) (0 1 2 .a. 0 ) (1 2 0 1 ) 

(0  1 2 ... 0 ) (2 0 1 ... 2 ) ( No Change 1 

(2 1 1 ... P ) (2 '€ 1: ... 2 ) ( 0  o ... 0 ) 

i n  which 41, $2 are non-negative integers. 

Without loss of generality, we assume $ > $, 

The adjacency relat ion i n  i requires that 

i2 > il- 

il+l 
$ - % 3 (3 mod B) - (3'l mod B) 5 2% mod Bo 



But 

and 

Hence 

In  a l ike manner, one can show that those i n  M with k2 as 

coefficients cannot be adjacent i n  the ordering of i. 

Therefore, the weight of A.3  i s  given by 

2$ P 2(x+1) + 641 = 1 m o d  3. 

$ - L l  i s  not congruent t o  2 . 5 .  

2.x = 2 y, 
which is also the distance of the code. For the case when 

B = 4x-1, we have a minimum distance equal t o  2 

A General Class of Multiple Random Error-Correcting Codes 

It has been stated that any integer can be expressed as a product of 

prime, and i n  particular,  

B-1 B-1 
2B-1 - 1 = ( 2 7  - 1) (21 + 1) 

k 

P1 
( 2 9  - 1)J pi%, 

where B i s  a prime, w i t h  2 as a primitive root. Since B must divide 

( 2 9  + 1) , it folluws tha t  one of the primes, pi must be equal t o  B, 

with CY1 = 1. Without loss of generality, l e t  p1 = B and 5 - 1. The 

generator A chosen 

section clear ly  i s  

fo r  the binary cyclic code discussed i n  the p.reviOus 

-15 - 



With such a choice of A, we have a cyclic* code, having B code words, including 

the all-zero code word. 

N a r  choose A such tha t  

3 forsome j , 2 S j S k , l S 7  

( 2 F  - l)~pi. 

S aj. 

T h i s  w i l l  resul t  i n  a code having B p .7j  code words of code length (B-1)) 

provided tha t  e(2,A) = B-1 and which consists of dis joint  cyclic subsets Of 

code words. We can s t i l l  c a l l  it a cyclic code, however, i n  the sense that 

any code word can always be obtained by cyclic-shift ing some other code 

words. "his i s  the practice i n  cyclic algebraic codes. 

3 

The determination of the minimum distance i s  no longer a simple matter 

since each cyclic subset must be examined. 

developed i n  the proof of Theorem 2, we note t h a t  the central  in te rva l  of N i  

was  uninterrupted since 2 i s  a primitive root of B. 

of the minimum distance of each subset, the cent ra l  in te rva l  of 

Referring t o  the notation already 

Nar, f o r  the determination 

N i  = 2i mod (B pj7j) 

(which remains t o  play the important role  of determining the minimum weight) i s  

no longer uninterrupted. Thus the mmber of residues modulo (B pj7j)  t ha t  

fall  within the central. in te rva l  can be different for  each subset, and it is  

*It is cyclic i n  the s t r i c t e s t  sense, tha t  is, every code word Can be 
obtained by cyclic-shifting any other code words. 

-16- 



t h i s  

(B 

number that gives the mini- distance f o r  zhe par t icu lar  subset. 

An algorithm is f o m l a t e d  t o  count the number of residues modulo 

p.Tj) that f a l l  within the central. in te rva l  f o r  each possible subset. 
J 

However, when p jy j  becomes large, the cuunting process becomes a tedious 

one, even f o r  a computer. The actual computation only counts f o r  half of 

the word length since t h e  other half  is i ts  complement, from the fact t h a t  

A has the fac tor  (%)* 2 2 

Fig. 1 is a p lo t  of k (transmission rate) versus d (the 'error '  
4 2  2n 

c o m e t a b i l i t y  rate) f o r  various code lengths n = B-1. W e  use only half  

of the code length. 

or ig ina l  code word, one being the complement of the other. 

Therefore, two code words are obtained from each 

The minimum 

distance, d, of the or iginal  code word i s  also halved, but the r a t i o  d/n 

remains unchanged. Also super-imposed on the same plo t  are the Hamming 

upper bound and Varsharmov-Gilbert bound.for n + 00. 

Burst Error Detection and Correction 

For the cyclic code presented at the beginning of this chapter, we have 

the code word A . 1  i n  its binary form 

A s  a r e s u l t  of generation, this code word begins with [log$]* zeros, and 

and %-1 will be ones. Thus any e r r o r  pat tern of length 1 loQBl+l both a 

B-2 - [log@] or  less cannot be a code word, since it represents a number 

less than A. That is, fo r  e E 0 O..,O e 0**eB-2 eB-l or  i t s  
[ log2131 +2 

cycl ic  shif'ts, where e , egml f 0, then e 4 0 (mod A)  and the  
10g2Ble 

burst is detectable. 
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Before we mention the Fi re  code analogy i n  arithmetic codes proposed 

by Mandelbaum8, we need some definitions. 

n i f  2n > N > Zn-' -1. 

coefficient i s  non-zero i n  i t s  binary representation. 

i s  said t o  belong t o  an exponent e if e is  the l e a s t  posit ive integer such 

that p divides (p 2 1). 

A number N is said t o  have length 

The parer of a number i s  the largest  exponent whose 

Finally a number N 

Here we simply state the theorem which provides the method of construct- 

ing the burst  error-correcting codes. 

The theorem s t a t e s  that the ari thmetic code generated by A = (2'-l)p w i l l  

detect any combination of two er ror  burs t s  E = 2iE1 + 2jE2 Drovided 

c-1 2 b l  + b2, where bl ,  b2 are the length of the burst errors  E l ,  E2 

respectively, p i s  a prime and i t s  parer at l ea s t  as great as the length of 

the shorter  burst, and provlded the length of the code is no greater than 

the l e a s t  comaon multiple (LCM) of c and the exponent e t o  which p belongs. 

kt b2 > bl, then p > 2b1 -1. If c i s  an even integer, then the arithmetic 

code generated by A = (2'-l)p can detect any two bursts each of length b o r  

less provided c 2 2b md p > 2b-1. 

and e, where  e is the exponent t o  which p belongs. 

a burst e r ro r  of length b o r  shorter. 

the choice of p within th i s  bound 2b+1 > p > 2b-1 f o r  larest necessary 

redundancy, since, i f  p > 2b+1-1 we can correct a burst  e r ror  of longer 

length. 

of c ,  i-e., c = 2b, A has a length of r E 3b+l which i s  the number of check 

The proof i s  contained i n  the reference8. 

The length i s  l e s s  or equal t o  the LCM of c 

This code will correct 

For a given burst-length b, we l i m i t  

For this choice, p has a length of b+l, and w i t h  the m i n i m  choice 

digi ts .  

Now f o r  any burst error-correcting code of length n, the residues of 

In  order t o  correct burst  errors  A belong t o  mutually exclusive classes. 
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of length b o r  l ess ,  it i s  necessary that there must be at least 2b d i s t i n c t  

classes,  each containing n d i s t inc t  residues, i.e., 

The arithmetic code generated by A P (2'-l)p, where 2b+1 > p > 2b-l 

and c p3 2b, corrects burst e r ro r  of length b. 

satisfied. It follows tha t  

The above inequality i s  thus 

then 
e 22b+l 2r-b 

we have r-b - log2 n > 0. 

This i s  the bound f o r  the i d e a l  case. 

code, a fur ther  constraint  i s  given by 

However, w i t h  the arithmetic "Fire" 

n s w ( e , c ) .  

Thus f o r  a given b, hence r, we obtain the smallest redundancy by maximizing 

n. Hex we have c P 2b and 

P-1 e P - , where v i s  a posi t ive integer  
V 

f o r  v = 1, e is even and hence n ?j; (p-1) b, 

v .I 2, i f  e and c are r e l a t ive  primes, n 5 (p-1) b, 

i f  they are not relative primes, n < (p-1) b, 

v I 3,4,.. .,it is  obvious that n < (p-1) be 

"huS a bound f o r  the "Fire" arithmetic code i s  given by n < (p-1) 9 b 



or  

therefore, 

n < (2b+1-1) b, 

r-b-lo+n > r-b-log b - 10g(2~+'-1) 

= 2b+l - log b - 10g(2~+l- l ) ,  as r = 3b+L 

If v = 1, and p-1 is  relat ive prime t o  c = 2b+k, where k > 0, l e t  us investi-  

gate whether any improvement i n  redundancy can be achieved, t ha t  is, i f  there 

is a greater gain of information b i t s  than tha t  of check bits. 

For simplicity, l e t  us w r i t e  

then 

= 2b+l - log b - 10g(2~+'-1) fo r  c = 2b, QO 

gk 2b+k+l - log(2b+k) - 10g(2~+l- l )  fo r  c = 2b+k. 

We have an improvement i n  redundancy, i f  and only i f  gk C go, i.e., it resu l t s  

i n  a bound that is  closer  t o  zero. For gk C go, we must have 

o r  simply 

o r  

k - l0g(2b+k) < - log b 

l o g - > k  2b+k 
b 

2b+k - > 2k 
b 

k > b(2k-2)p 

which is  only satisfied if k P 1. 

c and the exponent of p(= p-1) are relative prime t o  each other, we have 

gained mom than one information b i t  at the expense of one additional check 

bit .  

That is, by choosing c P 2b+l such t h a t  

For k > 1, there i s  no improvement. 
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Two bounds for  c 2: 2b and c =: 2b+l are shown i n  Fig. 2, the zero l ine  

being the ideal bound. For large b, the two bounds converge. We a lso  show 

c = 2b go =I 2.68 

the range of redundancy as decided by the choice of p f o r  each given length 

of burst-error t o  be corrected from b = 2 and b 3 10. The number of p one 

c = 2b+l g1 = 2.55 

can choose increases as b increases. 

gives the leas t  redundancy (closest  t o  the bound) is not necessarily the 

largest  prime within the range 2b+1 > p > 2b-l. In  addition, the primes 

that resul t  i n  the l ea s t  redundancy i n  the two cases c = 2b and c E 2b+l 

It is  noted t h a t  the prime p tha t  

are not necessarily the same. 

are generated by prime numbers as presented by Stein7 and show t h a t  these 

codes are considerably be t te r  than the "Fire" code. In  Table I11 we have 

We a lso  include t h e  arithmetic codes t h a t  

an example of the arithmetic Fire Code correcting burst  e r ro r  of length 5 

or  less t o  illustrate some of the points mentioned already. 

53 
59 
61 

Length n r-b-log n - 1  Length n r-b-log n 

180 
20 
70 

230 
260 

3- 51. 
6.68 
4.87 
3.15 
2.98 

290 2.82 
60 5.09 

396 3.37 
220 4.21 
154 4.73 
253 4.01 
572 2.84 

2.68 
2.63 

638 
660 
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CHAPmER I1 

NON-BINARY ORTHOGONAL CODES 

S* H e  Chmg 

Introduction 

An effect ive set of signals f o r  use i n  a channel w i t h  additive white  

Gaussian noise i s  the orthogonal set.3 Methods of constructing orthogonal 

continuous waveforms are widely studied. The construction of orthogonal 

binary waveforms (orthogonal codes) is  based primarily on Hadamard matrices. 

A H a d a m a r d  matrix is  an orthogonal matrix whose elements are the  integers 

+1 and -1. Hadamard matrices of various orders have been constructed 

through the generation of pseudo-random sequences of the types (1) m a x i m  

length sequences (m-sequences), (2) quadratic residue sequence (or kgendre 

sequence), (3) twin prime sequence, and (4) H a l l  sequenceO2 

no such study has been made for  the construction of orthogonal matrices 

using integers (or ra t ional  numbers) as elements, although their uses i n  

non-binary coding can be anticipated. Furthermore, it is f e l t  that such 

study may bring the two amas of endeavor, discrete  coding and waveform 

design, c loser  t o  each other. 

It seem that 

I n  the next section the construction of Hadamard matrices by means 

of binary m-sequences i s  explained. 

Construction of Hadamazd Matrices 

It i s  easier t o  explain the method of construction by a specific 

k t  us choose t o  construct a 16 X 16 Hadamard matrix. example. First 
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we select  an irreducible primitive polynomial of degree 4 over GF(2) 

f (x)  = x4 + x + 1. 

Then a l inear  recurrence sequence can be generated by the following sh i f t  

regis ter  c i rcu i t  when, say, 1000 

r 

- 0 e  o =  0 -  
J - 

is originally stored i n  the regis ter  stages before the shif t ing is started. 

The sequence of per iod 15 appears as follows: 

1 0 0 0 1 0 0 1 1 0 1 0 1 1 1 .  

Next, the elements 0,l of GF(2) are mapped t o  the two integers, namely, 

The sequence becomes 

-1 1 1  1 -1 1 1  -1 -1 1 -1 1 -1 -1 -1. 

This sequence, together w i t h  i t s  14 cyclic s h i f t s  form a 15 X 15 matrix. 

With the f ina l  addition of a row and a column of 16 1's each, the COnStruC- 

t ion  of Hadamard matrix i s  completed. 

-26- 



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  
1 -1 1 1 1 -1 1 1 -1 -1 1 -1 1 -1 -1 -1 
1 -1 -1 1 1 1 -1 1 1 -1 -1 1 -1 1 -1 -1 
1 -1 -1 -1 1 1 1 -1 1 1 -1 -1 1 -1 1 -1 
1 -1 -1 -1 -1 1 1 1 -1 1 1 -1 -1 1 -1 1 
1 1 -1 -1 -1 -1 1 1 1 -1 1 1 -1 -1 1 -1 
1 -1 1-1 -1 -1 -1 1 1 1-1 1 1 -1 -1 1 
1 1-1 1 -1 -1 -1 -1 1 1 1-1 1 1 -1 -1 
1 -1 1-1 1 -1 -1 -1 -1 1 1 1 -1 1 1 -1 

1 1 -1 -1 1 -1 1 -1 -1 -1 -1 1 1 1 -1 1 
1 1 1 -1 -1 1 -1 1 -1 -1 -1 -1 1 1 1 -1 
1 -1 1 1 -1 -1 1 -1 1 -1 -1 -1 -1 1 1 1 
1 1 -1 1 1 -1 -1 1 -1 1 -1 -1 -1 -1 1 1 
1 1 1 -1 1 1 -1 -1 1 -1 1 -1 -1 -1 -1 1 

H =  1-1-1 1 - 1  1-1-1-1-1 1 1  1-1 1 1  - 1 1 1 1 -1 1 1 -1 -1 1 -1 1 -1 -1 -1 -1 ! 
This construction procedure is based upon the following property of 

the m-sequence. Let the in f in i t e  sequence be represented by 

which is of period r = 2m-1. The autocorrelation f'unction of this sequence 

re la t ive  t o  the mapping 9 is  

For the mappings defined above, $(T) can assume only two values, 

$(T) = r if 7 = 0 mod. r 

$(T) = -1 if T 4 o mod. r. 

If we denote the core* of the Hadamard matrix H by HI, then 

* The core i s  the matrix before the addition of a row and a column of 1's. 
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where I is  the  r X r ident i ty  matrix and J is  the r X r matrix i n  which 

all en t r i e s  are 1's. Consequently, we have 

where n = r + 1. 
which are mutually orthogonal. 

derived i f  one forms the following matrix: 

Thus the row vectors of H can be used t o  design waveforms 

A biorthogonal set of waveforms can be 

then 

Orthogonal Matrices Using -1, 0, 1 as Elements 

Again we use an example t o  i l l u s t r a t e  the procedure. A n  m-sequence 

over GF(3) of period r = 33-1 = 26 can be generated by using a shif t  

reg is te r  c i rcu i t  which corresponds t o  the irreducible primitive poly- 

nomial over GF(3) 
f (x )  = x3 + 2x + 1. 

output 

Starting w i t h  the stored d i g i t s  1 0 0, one period of the m-sequence i s  as 

f ollms : 
1 a 0 2 0 2 1 2 2 1 0 2 2 2 0 0 1 0 1 2 1 1 2 0 . 1 1 -  



If we use the following mapping of elements GF(3) in to  elements over 

r a t iona l  f i e ld  

d o )  = 0 

rl(l) = 1 

1(2) - -1, 
The sequence becomes 

1 0  0 -1 0 -1 1 -1 -1 1 0  -1 -1 -1 0 0 1 0  1-1 1 1  -1 0 11. 

In  t h i s  case, the autocorrelation f'unction has the following values 1 

@(O) P 2-3"" = @(r) 

d($) = -2.3m-1 

b ( ~ )  P 0 elsewhere i n  the range 0 < T < re 

That is, i f  one forms a matrix A, w i t h  the rows consisting of the above 

sequence and its r shifts, then 

where X = 203~~' II 2.3 = 6, since m = 2. 

design of biorthogonal waveforms using -1, 0, 1 as elements. 

the number of waveforms is equal t o  the  dimension of the row vector, 

Instead of M c e  the dimension as i n  the case of binary codes. 

The 26 rows can be used i n  the 

However, 
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A simple decomposition of the matrix A enables one t o  find an orthog- 

onal matrix of the order x 

as 

. Thus, it i s  noted that A can be writ ten 
2 2  

And it can be sham t h a t  

Thus B i s  indeed such an orthogonal matrix. This matrix i s  depicted below 

i n  i t s  complete form. 

B =  

1 0 0 -1 0 -1 1-1 -1 1 0 -1 -1 
1 1 0 0-1 0-1 1-1-1 1 0-1 
1 1  1 0  0-1 0-1 1-1-1 1 0  
0 1 1  1 0  0-1 0-1 1-1-1 1 
-1 0 1 1 1 0 0-1 0-1 1-1-1 
1-1 0 1 1  1 0  0-1 0-1 1-1 
1 1 - 1  0 1 1  1 0  0-1 0-1 1 
-1 1 1 - 1  0 1 1  1 0  0-1 0-1 
1-1 1 1 - 1  0 1 1  1 0  0-1 0 
0 1-1 1 1 - 1  0 1 1  1 0  0-1 
1 0  1-1 1 1 - 1  0 1 1  1 0  0 
0 1 0  1-1 1 1 - 1  0 1 1  1 0  
0 0 1 0  1-1 1 1 - 1  0 1 1  1 * - 

- 

The minimum Hawning distance among the  row vectors i s  9. 

than can be provided by Hadamard matrices w h e r e  the minimum distance 

i s  always n , n 01 r+l. A set of 26 biorthogonal row vectors each of 
2 

dimension 13 can be obtained by putting a -B matrix under B. 

T h i s  i s  greater 

Orthogonal Matrices U s i n g  0, k1, 22 as Elements 

The m-sequence over GF(5) has i ts  period equal t o  r = gm-l. 

s imilar mappings as before the autocor;relation f’unction #(?) i S  W a n  

Under 
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zero f o r  all values of T within the period except for T =I 0, 2 . Thus, if 
2 

then 
d(0) = -@($) = 2 0 5 ~  

@(TI = 0 elsewhere i n  the range 0 < ‘f < r. 

Orthogonal Matrices Using 7 Integers as Elements 

The autocorrelation f’unction of the m-sequence over GF(7) re la t ive 

t o  the mapping 

V ( 0 )  = 0 

rl(1) = 1 

V(2) = 2 

d 3 )  = 3 

~ ( 6 )  = -1 

d 5 )  = -2 

7(4) = -3 

behaves different ly  from those over GF(3) and GF(5) i n  that it is  not 

zero thro@cmt the ranges 0 c z < , and < T < r where r = pm-l = 7m-l. 
2 F 

Rather, it assumes the  following values: 
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The values of @(t) and @(a) are  calculated from the following considerations. 

There are two primitive elements over GF(7), e = 3 and 5(=  -2)* 

fo r  example, the various parers of 3(mod. 7) are 

Take e = 3 

3 3 l  32 33 34 35 36 iI” 3 2 -1 -3 -2 1 3 
1 When 7 x t, the autocorrelation function can be expressed as 

9 (a) 
0 X 
1 X 
2 X 
3 X 
-1 X 
-2 X 

+ -3 X 

9(3d 

0 
3 

-1 
2 

-3 
1 

-2 

When 7 P 2 t  

Note tha t  the numbers i n  the 2 brackets differ by a sign only. If we make 

a new mapping such as 
o +  0 
fl + +a 
+2 -B kb 
+3 * +c, 
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then it may be possible t o  equate the value of the number inside the 

bracket t o  zeros. That is, we w i l l  s e t  

Since there are 3 unknown w i t h  one equation, we may assign arbi t rary values 

t o  two unknown and solve for  the third. Thus, l e t  

b = 2  

ab 2 
a+b 3 

C " - - - P - *  

The new set of elements are i n  the rat ional  f ie ld ,  namely, 0, 51, k2 and 

2 5 - . 
3 

elements 0, 23, 56 and 22. 

If integers are desired, they may be rescaled in to  the following 

As an example, l e t  m P 2, the m-sequence over GF(7) generated by 

the irreducible primitive polynomial f (x)  = x2 + 6x + 3 i s  of period 

p2-1 = 48. 

1 0 - 3 - 3 - 1  1-3 1 3  0-2-2-3 3 - 2  3 2 0 1 1 - 2  2 1 2  

-1 0 3 3 1 -1 3 -1 -3 0 2 2 3 -3 2 -3 -2 0 -1 -1 2 -2 -1 -2 

Tie orthogonal matrix of order 24 X 24 using as elements the numbers 

0, 23, "6, *2 is  shown on the next page. 
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Orthogonal Matrices Using 11 Integers as Elements 

The factors  which contribute t o  the values of #(T) of the m-sequence 

over GF(ll) a t  7 P t, 2 t ,  3t and 4t  a= as follows: 

primitive element, i t s  parers are 1, 2, 4, -3, 5, -1, -2, -4, 3, -5,  1). 

(note that 2 i s  a 

The expressions f o r  #(3t) and #(4t) contain fac tors  inside brackets same as 

above. If we make the following mapping 
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0 4  0 

21 4 +a 

22 4 kb 

+3 + +c 

+4 + +d 

+5 4 +e , 
then equate the expressions f o r  the numbers inside the brackets t o  be zero, 

and 

It turns  out 

equations i s  

construction 

Extension of 

ab + bd + (c)(-e)  + (a)(-c) + e(-a)  = 0 

ad + b(-c) + ca  + de + e(-b) = 0. 

tha t  i f  one assigns a = 1, b = 2, c = 3, a solution t o  the two 

d = 4 and e = - - 1 . Therefore, a suitable mapping t o  use f o r  the 2 

of an orthogonal matrices of 11 integers i s  such t h a t  

v(0) = 0 

T ) ( + l )  = +2 

T)(+2) = +4 

7(+3)  = +6 

~) (+4)  = 28 

7(+5)  = il. 

t h i s  procedure t o  p = 13 leads t o  equations whose solutions 

contain elements of i r r a t iona l  numbers. 

Reduction of Types of Elements 

Under cer ta in  conditions, the number of types of elements can be reduced 

from a higher prime number t o  a lower prime number wi thout  destroying the  

orthogonality. For example, the 12 X I 2  orthogonal matrix of 5 elements 
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can be reduced t o  tha t  of 3 elements by mapping 52 onto k1. The resul t ing 

Original Number 
of Elements 

matrix is as follows: 

B =  

Reduced Number Mapping of 
of Elements Elements 

1 0  1-1 1 1 - 1  0 1 1  1 1  
-1 1 0  1-1 1 1 - 1  0 1 1  1 
-1-1 1 0  1-1 1 1-1 0 1 1 
-1-1-1 1 0  1-1 1 1-1 0 1 
-1 -1 -1 -1 1 0 1-1 1 1-1 0 
0 -1 -1 -1 -1 1 0 1-1 1 1-1 
1 0-1-1-1-1 1 0 1-1 1 1 
-1 1 0 -1 -1 -1 -1 1 0 1-1 1 
-1 -1 1 0 -1 -1 -1 -1 1 0 1-1 
1-1 -1 1 0 -1 -1 -1 -1 1 0 1 
-1 1-1 -1 1 0 -1 -1 -1 -1 1 0 
0 -1 1-1 -1 1 0 -1 -1 -1 -1 1 1 . 

- 

- 

Other examples are l isted i n  the following table:  

I I I 

5 
7 
7 
11 
11 
11 

a = b = l  
a I= b = 2, c = 1 
a = 1, b = c = 0 
a P 2, b = c P 6, d = 10, e P 1 
a = 3, b E c = d P 6, e = 2 
a 5: b = c = d P 0, e (any values) 

Products of Orthogonal Matrices 

There are two types of products of orthogonal matrices which lead t o  

new orthogonal matrices. 

Kronecker or  tensor product. 

and B are orthogonal matrices 

One is the ordinary product and the other is the 

This statement i s  true because, as&% A 

(1) UT = xaI and BBT = 

(AB) (m)T = A(BBT) AT A ( ~ I )  AT = X ~ ~ I  

(A and B of the same rank); 
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(2) (A x B) (A x B)T = (A x B) . (AT x BT) = (UT) x (BBT) 

Note tha t  A and B are not necessarily of the same rank. 

Some examples for each of the two types of products i s  given below. 

L-1 1 1 01 

(3 elements) 

A*B = 

- 

(2 elements) 

(3  elements) ( 5  elements) 

-: : - j = p - 5 - 1  5 3 1 1  .] 
1-2 0 2 1 1 -5 -3 
2 1-2 0 1 -1 3 -5 . 

( 5  elements) (6 elements) 

- 
0 1-1 -1 0 1-1 -1 
1 0  1-1 1 0  1-1 
1 1 0 1 1 1 0 1  
-1 1 1  0-1 1 1  0 
0 1-1-1 0-1 1 1  
1 0 1-1-1 0-1 1 
1 1 0 1-1-1 0-1 
-1 - 1 1  0 1-1-1 0 I . 

(8 x 8) 

It is evident that these 

f o r  generating new orthogonal matrices from old ones. 

two types of products provide recursive methods 
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Construction by Inspection 

The following orthogonal matrices are obtained by inspection 

(1) 2 x 2 (3 l eve l  o r  l e s s )  (2) 4 x 4 (7 leve l  o r  l e s s )  

[-: "a] 

8 X 8 (15 level  o r  l e s s )  

a b - c  d e f g 
-b a d c - f  e - h  g 
c d a b - g  h e - f  

-d -c -b a -h -g f e 
-e f g h a - b  c - d  
-f -e -h g b a -d -c 
-g h -e -f -c d a -b 
- h - g  f - e  d c b 

- 

- 

By assigning suitable values t o  the letters, some of which may have 

the same value, orthogonal matrices of various elements can be constructed. 

Summary and Discussions 

The purpose of t h i s  study is  t o  explore the use of the rn-sequence for  

the construction of orthogonal matrices using more than two elements 1 and 

-1. 

of the m-sequences of p elements (p P 3, 5, 7,  11) R l a t i v e  t o  cer ta in  

mapping 7. The autocorrelation function has the same period as the m- 

sequence, Le., r ~i pm-l. 

and 7 - 
case for  P - 2, a segment equal t o  half period of the sequence is  used 

fo r  the construction of the orthogonal matrices. Furthermore, for  cases 

P = 7 and 11, @(T) assumes non-zero values under ordinary mappine; for  'r 

It i s  based upon the properties of the autocorrelation function @(T) 

Under symmetrical mapping, i t s  values at 7 = 0 

di f fe r  i n  sign, but equal i n  magnitude. Therefore, unlike the F 
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smaller than a half  period. 

Similar procedures applied t o  the cases f o r  p > 11 resul t  i n  solutions i n  

the elements of i r r a t iona l  o r  complex field. 

These are restored t o  zero by suitable remapping. 

It is  possible t o  derive orthogonal matrices using smaller number of 

It is  also possible elements from those using larger  number of elements. 

t o  obtain matrices using larger  number of elements from the products 

(ordinary) of matrices using smaller number of elements. Kronecker products 

provide a method of expanding the sizes of orthogonal matrices. 

The design of orthogonal matrices using more than two elements i s  an 

attempt t o  use multi-level d ig i t s  i n  the design of waveforms fo r  coding. 

Such waveforms m&y match with the existing channels better than those using 

two levels  only. 

(or other measure of distance) among the row vectors of the orthogonal 

It shaudl a l so  be noted tha t  the m i n i m  Hanrming distance 

matrix i s  usually larger  than which i s  a fixed value fo r  any n X n 
2 

Hadamard matrix using 2 elements. 
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Introduction 

Recently, many block codes have been constructed t o  cope x i t h  randnn 

The error-correcting code is  designed t o  correct t c  or  l e s s  errors. 

erroneous digi ts  i n  each code block of length n. 

code i s  used t o  determine whether or  not a code block of length n contains 

e r rors  (assuming that there are  no more than t d  corrupted digi ts  i n  each 

code block). 

codes is, i n  generd,  ra ther  complex, and the e r ror  detecting code reveals 

no information about how badly a code block is corrupted. 

desirable t o  have an intermediate code which can be decoded rather  simply 

i n  comparison t o  the error-correcting code while giving more information 

than the error-detecting code. 

The error-detecting 

Unfortunately, the decoding scheme fo r  the error-correcting 

Therefore, it i s  

me concept of error-counting i s  developed t o  satisFy t h i s  requirement. 

The decoding procedure of such a code gives the number of emneous  d i g i t s  

without referring t o  their exact psitions. 

it is  required that the decoding procedure be far less canplicated than 

that of an error-correcting code. 

h m l e r  t o  be cmpeti t ive,  

There 81p: two w s  t o  obta;in error-caunting schemes, aamely, the 

constructing of new codes and the use of inherent error-counting property 

of existing error-correcting codes. 

given. 

Some results along-both l i nes  w i l l  be 
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The Construction of Error-Counting Codes 

The technique of block design* has been incorporated here t o  find a 

suitable parity-check matrix. Ekamples of two classes of error-counting 

codes so  constructed are given below: 

(a) n-error-counting codes derived from permuting n X n 

ident i ty  matrix. The parity-check matrix i s  given by 

I n  I n  In  In  ... In  In  I n  rp 
I 

I 

~ ~~ ~~ 

. . . . ... . . . I :  . . . ... . . 

where 

(1) P is  an n X n matrix whose en t r ies  are  a l l  zero except 

the first colwnn which contains a l l  1’s; 

It is a cyclic permutation matrix ( to  the right) f o r  

postmultiplication; 

(2) 

and (C> L, i s  an n X n ident i ty  matrix. 

Edwin F. Beckenbach (edi tor) ,  Applied Combinatorial Mathematics J 
* 

Chapter 13, John Wiley & Sons, 1964. 
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The syndrome & of a received vector (or sequence) i s  calculated 

& r , r , H T  . 
It can be sham that the syndrome is classif ied according t o  i t s  pat tern 

and dis t r ibut ion of weights. 

different  number of e r rors  i n  a mceived sequence. 

This c lass i f ica t ion  corresponds t o  the 

For example, the parity-check mat r ix  of a (12,3) 3-error-counting code 

is 

H =  

io0 loo 100 100' 
100 010 010 010 
100 001 001 001 

010 100 001 010 
010 010 100 001 
010 001 010 100 

001 100 010 001 
001 010 001 100 
001 001 100 010 

The syndrome c lass i f ica t ion  i s  as follows: 

(1) W[ ,SI ] P 0 which implies no error ,  where  W[ ,s, 1 

denotes the weight of the syndrome 18, . 
(2) W[ 1 3, which is further c lass i f ied  as follows. 

(a )  Let the syndrome 1s, be divided in to  three 

sub-syndromes s1 s2 , 9, each 

containing 3 dig i t s ,  i.e., 
u u  
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I f W [ s & l = W [  s l = W [ S & l = l  & 
or  i f  one of the sub-syndromes is  of 

weight 3 and the other two of weight 

zero, then the received block contains 

a single error.  

Otherwise there are 3 o r  moxe errors. (b) 

(3)  

(4) 

w[ 1611 P 2, 4 or  6 (even) which implies 2 errors. 

w[ S I  P odd number > 3 which implies 3 or  more 

errors. 

Although the objectives of t h i s  c lass  of codes are achieved by simple 

classi f icat ions of the syndromes, it is  a c lass  of high-redundancy. Further- 

more, f o r  each pre-specified error-countability requirement only one code 

can be obtained. I n  the following, we attempt t o  construct some more 

eff ic ient  codes by using "doubly cyclic codes". By doubly cyclic code 

we mean that  i f  & = A v2 i s  a code word, then V i  V$ 
1 I I '  ' - 1  is also 

a code word where vi E: v1 II and v$ P v2 n and r[  is a cyclic pemuta- 

t ion  matrix. Note tha t  v1 v; i s  not necessarily a code word. An 

example of 3-error-counting (20,lO) code is  given below: 

u u  u u  

I 1 1 

H =  

- 
i o o o o o o i o i i o o o o o i o o i  
1 1 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 1 0 0  
0 1 1 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 1 0  
1 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1  
0 1 0 1 1 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0  
0 0 1 0 1 1 0 0 0 0 0 1 0 0 1 1 0 0 0 0  
0 0 0 1 0 1 1 0 0 0 0 0 1 0 0 1 1 0 0 0  
0 0 0 0 1 0 1 1 0 0 0 0 0 1 0 0 1 1 0 0  
0 0 0 0 0 1 0 1 1 0 0 0 0 0 1 0 0 1 1 0  - 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 1 0 0 1 1  - 
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The syndrome patterns and weights can be c lass i f ied  according t o  the 

f o l l a r i n g  : 

(1) w[ 4 = 0 which implies no error. 

(2) W[ 16,] = 3 which is further c lass i f ied  as follows: 

(a)  If -s- i s  a shifted version of e i the r  

1 1 0 1 0 0 0 0 0 0  

o r  
1 1 0 0 1 0 0 0 0 0 ,  

then the received sequence contains only 

a single error.  

Otherwise, there are 3 or  more errors.  (b) 

(3)  W[ &I = even integer which implies two errors. 

(4) w[ A1 P odd integer > 3 which implies 3 or  more errors.  

Error-Counting Property of B-C-H Codes 

A sub-class of B-C-H codes can be used as error-counting codes by 

simplifying the step-by-step decoding procedure suggested by Massey. 

For a t-error-correcting binary B-C-H code, the matrix 1 
"2t-1 

1 

s2 

s2t -2 

0 

s1 

s2t-3 

0 

1 

'2t -4 

... 
0 . .  

0 . .  

is singular i f  the weight of the error  pattern i s  t-1 o r  less, and i s  

non-singular if  the weight of the e m r  pat tern is  t or  t+l. 

the power sum9 of the errors ,  are elements of GF(2m). 

Si ' s ,  

A partid list 
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of a subclass of the B-C-H code given i n  Table I shows that $-1 the matrix 

can be obtained by deleting the last raw and the last column of the matrix 

$. Similarily Lt.2 can be obtained from k-1 and so on u n t i l  L1 i s  

obtained. 

weight of the e r ror  pattern i s  i-1 or less and is  non-singular i f  the 

weight of the e r ror  pattern i s  i or  i+l. 

axe as follows: 

Each of the Lifs has the property that it i s  singular i f  the 

The error-counting procedures 

Step 0 - s e t  i P t, 

Step 1 

Step 2 

- calculate det $, 

- i f  det $ 0, go t o  Step 4; otherwise 

go t o  Step 3, 

Step 3 

Step 4 

Step 5 - stop. 

- decrease i by 1 and go t o  Step 1, 

- number of e r rors  = i, 

This i s  an easy error-counting procedure provided a calculator over 

GF(2m) i s  available. The calculation over GF(2m) is, i n  general, far more 

complicated than tha t  over GF(2).2 In  order t o  simplify such calculations 

which are used i n  Step 1, we establish the following notations and theorem 

that f a c i l i t a t e s  the  determination of the value of det $. 
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Table I A Partial List of B-C-H Codes Adaptable t o  E r r o r 4 m t i n g  

k 

4 

7 
5 
26 
21 
16 

57 
51 
45 
39 
36 
30 

11 

t 

1 
1 
2 
3 
1 
2 
3 

1 
2 
3 
4 
5 
6 

- 
n 

127 

255 

- 

- 
t 
- 
1 
2 
3 
4 
5 
6 
7 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
- 

L e t  0, &, d.,..., @-1 be elements of G F ( 9 ) .  If each ai i s  mapped 

i n t o  a column vector ai] of m elements over GF(2), then ai] can be obtained 

Y 
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where  To i s  the CW€LniOn matrix as defined by 

For each Lj, w i t h  elements wri t ten i n  terms of ai's we have 

I t  . . . . . 

where are either one o r  zero. We can form a binary matrix 

L' = 
J 

112 
a12T0 . . 

The matrix Lj is a 3 X j matrix Over GF(P) and the matrix Li i s  a j m  X j m  

matrix Over GF(2). 

Nar,the following theorem can be established: 

Theorem 

det Lj P 0 i f  and only i f  det L; = 0. 
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Proof 

If det Lj = 0, then there ex i s t s  at least a set 

of columns (or raws) which are linearly dependent. 

kt 

21 

or  

. I 

E O  

This implies that 
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Now suppose tha t  

det L j  f 0 and de t  Li - 0. 

det  Lj f 0 implies t ha t  Equations (1)) (2) and 

(3) do not hold. 

But L' = 0 implies that a set of columns are l inear ly  dependent. 
j 

Suppose t h i s  S e t  O f  C O h I W M  8R chosen Such tha t  dk(dk ?= m) C O b D I l S  aJX? 

f ran 

But a u T o  ium-l]] , hence a linear combination 

or  

Therefore, the dk column combination of (6) 

J 

t S  

. 
Then the l inear  combination of columns can be wri t ten  as 
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or  equivalently 

""'1 = 0 f o r  h = 1,2,. . ,j. (10 1 

Returning t o  GF(P) f ie ld ,  we have 
a 

z % k B  a = 0 ,  h = 1,2,. ..,j, 

where B k t s  are elements of GF(2m). Therefore, we c m  obtain 1 columns of 

Lj such tha t  they are l inear ly  dependent. This i s  i n  contradiction t o  our 

previous assumption. Q.E. D. 

With the help of t h i s  theorem, the  error-counting process can be 

great ly  simplified. 

i s  a binary matrix instead of det $ which i s  a matrix over GF(9) .  

more, al l  the elements of det $ can be obtained from er ro r  syndromes and a 

l inea r  sh i f t  -register. 

I n  Step 1 we need only t o  calculate de t  Lf which 

Further- 
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CRAPPER N 

DATA TRANSMISSION BY WISE AMP- MODULATION THROUGH A NOISY CRANNEL 
WHICH HAS BEEN RA"U SEUCTED* 

R. A. Gonsalves 

In t  roduc ti on 

We consider here a design of a fixed equalizer fo r  Pulse Amplitude 

Modulation (PAM) signals transmitted over a ndisy, randomly-selected 

channel. 

mean-sqyare e r ro r  between transmitted and. received message sequences when 

averaged over al l  real izat ions of the  channel, the additive noise sequence, 

and the message sequence. 

The l inear ,  time-invariant eqyalizer i s  chosen t o  minimize the 

By "randcdy-selected" we mean that the channel, assmd l inear  and 

t h e i n v a r i a n t ,  has a system Rurction R(f) which is a real izat ion of a 

stochastic process. 

w h a t  character is t ics  of th i s  process must be known i n  order t o  design the 

fixed equalizer using our mean-squclre e r ro r  cri terion. 

anticipate,  only cer ta in  second order s t a t i s t i c s  are required. 

One of the resu l t s  of the analysis i s  t o  determine 

As one would  

Although we assme that the  channel i s  time-invariant, the resu l t s  may 

be applicable t o  the equalization of a time-varying channel when the varia- 

t i ons  are slow relative t o  the correlation times of equalizer output signal 

and noise. In  fac t ,  the f b e d  eqplizer might be used t o  best advantage i n  

* W s  work was done in collaboration with D. W. Tufts of Harvard 
University, and is a continuation of studies i n i t i a t e d  at B e l l  Telephone 
Laboratories, North Andwer, Massachusetts. 
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conjunction with a variable, automatic f o r  a sluwly t i m e -  

varying channel. 

equalizer w i l l  be matched t o  the channel only i n  a probabilist ic sense, 

That is, due t o  the randomness i n  the system the automatic 

although the residual errors may be s m a l l .  To minimize the ef fec ts  of 

mismatch one would follow the adjustable equalizer by the fixed equalizer 

considered here. For such a system t h i s  analysis may be used t o  generate 

appropriate specifications on the automatic equalizer. 

The design of l inear ,  time-invariant equalizers f o r  a noisy, fixed 

channel has been treated i n  de t a i l  (see references 3-6 and 9-13 fo r  examples). 

The analysis of a noiseless, single-side-band system with small sampling 

time error and ca r r i e r  phase e m r  has been performed by Franks.7 The noisy 

channel with timing j i t t e r  has also been ~ t u d i e d . 5 , ~  These analyses a m  

special  cases of the more general problem treated here, except that j o in t  

transmitter-received optimization i s  treated i n  reference [3], [51, [61 and 

[81 and f in i t e  message sequences are assumed i n  xference [21. 

The System Model 

The m o d e l  w e  w i l l  study is  shown i n  Fig. 1. I n  tha t  figure the 

received PAM signal. before noise addition i s  y ( t ) ,  a real waveform given by 

a0 

where r( t)  i s  the received pulse shape w i t h  Fourier transform R(f ), 
00 

R(f) E r ( t )  e dt. 
-00 s 



Noise with 
Power Spectrum 

N ( f )  

Fig. 1 

The random message sequence [ak] i s  assumed t o  be stationary with message 

spectrum M ( f ) ,  a periodic spectral  density function given by the fonrmla 

M(f) = % + 2 m i  COS B i T f  c (3 )  
id 

i n  which [mi] is  the discrete autocorrelation function of the random 

sequence [ak). 
parer spectrum N ( f ) .  

response which w i l l . ,  i n  general, be non-zero f o r  t < 0. 

The additive noise i s  assumed t o  be stationary w i t h  known 

W ( f ) ,  the f i l t e r  t o  be determined, has a r e a l  i m p u l s e  

The sampler samples 

the output of W(f) at KC seconds (plus a fixed T' seconds t o  allow approxima- 

t i o n  of the non-realizable W ( f ) )  t o  give the received sequence [bk]. 

The Fixed Equalizer 

Defining IR as the mean-square error  between ak and bk when averaged 

over a l l  possible message sequences and noise sequences, one can show that 

IR is given by the fortnu& [51 C61 
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which i s  independent of the time index of k because of the assumed s ta t ionar i ty  

of message and noise. 

conjugation. 

In  (4) and throughout an asterisk denotes complex 

Averaging IR over all realizations of R(f), we have the average 

which i s  t o  be minimized by proper choice of W ( f ) .  

A stmightfoxward application of the  calculus of variations yields the 

following condition on W ( f )  f o r  A t o  be a minimum: 

for  all frequencies except those at which all R ( f ) ' s  are zero, and W(f) = 0 

elsewhere. For such a W ( f )  the result ing Amin i s  

We w i l l  discuss the solution of (6) fo r  W ( f )  momentarily, but first 

we notice that for  solution we must know the average channel transmission 

R(f), which is  the mean of the process and R*(f) R(f - $), the frequency 

autocorrelation of the process, at integer multiples of the frequency s h i f t  

1 - cps. 
T 
which must be modelled t o  find the optimum equalizer. 

- 

These are the qyantit ies which must be determine e x p e r i m n t d l y  or  

Following Reference 181, we solve for  W(f) by writing ( 6 )  f o r  a set 

i of frequencies u + 
(0, $1. I n  certain cases the result ing doubly in f in i t e  set of eguatibns 

(One fo r  each i )  can be solved using the theory of Toeplitz matfices. 

, i E 0, k1, +2,.. ., where u l i es  i n  the in te rva l  

Note that we need W(f) only for  f 2 0 since, fo r  the real time f'unctions 

considered here, W(-f) - p ( f ) .  
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In  cases f o r  which the channel i s  known t o  be bandlimited the solution 

can be quite simple. For example, suppose 

R(f) = 0 f o r  (flr - 1 . 
2T 

(The pulse rate of L pulses per second then correspnds t o  the Nyquist rate.) 
T 

Examination of (6) reveals that W ( f )  must be zero fo r  f 2 - 1 and f o r  

1 f e E , W ( f )  becomes 

W(f) = 

2T 

( 9 )  

From ( 9 )  we see that i f  the left-hand denominator term dominates the r igh t -  

hand t e r m ,  the  l o w  signal-to-noise-ratio case, W(f) reduces t o  a f i l ter  

matched t o  the average transmission characterist ic R(f). 

to-noise-ratio case the f i l t e r  W(f) attenuates those spectral  portions fo r  

- 
I n  the high signal- 

which b(f) 
transmission at those frequencies; also, i f  R(f) i s  nearly constant, 

is large, ref lect ing the large expected variations i n  channel 

W(f) = - , as should be expected. 
R(f) 

Naw suppose tha t  

9 
1+X f o r  l f l>  - m R(f) = 0 

and 

O C h C l .  

X is a measure of the "excess bandwidth"; that is, we are pulsing at rate 

T T 
, slower than the mquis t  rate of 1+A . Then examination of (6) reveals 

that W(f) must be zero f o r  f > , and f o r  0 C f C , Equation (9) 2!r 2!J! 
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, we follow the procedure 1-1 must s t i l l  hold. However, fo r  - < f < - 
2T 2T 

described above t o  show that W ( f )  must sa t i s fy  the matrix equation 

r 1 
i! 7 E2 

where W 1  denotes W ( f ) ,  W2 denotes W(f - L)J e t c . ~  and 
T 

Solving (12) fo r  W ( f )  we have 

To be more specific i n  t h e  preceding example assume that the randomness 

i n  R ( f )  resides en t i re ly  i n  a random delay 7 .  Thus 

j 2 n f T  
R(f) = e > 

where T is  a random variable having probabili ty density pT(.r) and character- 

i s t i c  M c t i o n  PT(f), 
PT(f) a e - j2 r r fT  

Then we have the expressions 

-58- 



and 

R*(f) R(f - k) = e 
T 

If we fur ther  assume tha t  N ( f )  % 0,  the high signal-to-noise r a t i o  case 

then f o r  f > 0, W ( f )  becomes 

This W(f) i s  sham i n  Fig. 2 f o r  small random delay and coincides w i t h  

previous results.  718 

Fig. 2 Optimum F i l t e r  for  Small Random Delay 
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Application t o  Random Phase and Random Delay i n  PAM-AM 

kt us nos assume that the received pulse shape r ( t )  is a randomly- 

delayed (by 7 seconds) baseband pulse produced by synchmnaus demodula- 

t ion  of a passband pulse with Fourier transform Z ( f ) .  We assume tha t  the 

fract ional  phase x = 8/2rr of the demodulating osc i l la tor  i s  a random variable 

having probability density qx(x) and character is t ic  function g(f). 
R ( f )  is 

Thus 

0 

where the randm variable T has pT(7) and PT(f),  as before. 

and demodulation of the passband pulse z ( t )  are depicted i n  Fig. 3. 

The generation 

This 

i s  the channel m o d e l  f o r  a PAM-AM system. 

cos afct 

Fig. 3 Generation and Demodulation of z ( t )  

We assume i n  connection with (21) and Fig. 3 t h a t  r o ( t )  contains no 

energy i n  the frequency band If17 W and tha t  the low pass f i l t e r  cut-off 
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1i.A 
m 

frequency W satisfies 
w = - c fc. 

Then using the procedure outlined i n  the previous section we can solve f o r  

W(f). 

independent and 2)  t ha t  N ( f )  = 0, the  high-signal-to-noise r a t i o  case, we 

calculate the resul t ing Amin t o  be 

Using t h i s  W ( f )  and assuming 1) tha t  8 and T are s t a t i s t i c a l l y  

We have evaluated the &n of Equation (23) f o r  x and 7 uniformly 

dis t r ibuted over (oxo, xo) and (q0, -r0) respectively, and for  several 

values of X, the  excess bandwidth. The results are sham i n  Fig. 4 and 

shw expl ic i t ly  the trade-offs between the thme parameters XO, TO, and X. 

Amin 

10’2 10-1 10-O 

xO 

Fig. 4 &n Versus Maximum Phase Ji t ter ,  xo, f o r  Various 
Excess Bandwidth, 1, and Maximum Timing Jitter, ‘c0 
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Conclusion 

We have specified the l inear ,  time-invariant equalizer, W ( f ) ,  which 

minimizes the mean-sguare e r ro r  i n  a d i g i t a l  system using PAM through a 

randomly selected channel, R ( f ) .  

of the average transmission, R(f), the (frequency) autocorrelation f'unc- 

t ion,  R*(f) R(&), the message parer s p e c t m M ( f )  and the noise power 

The equalizer i s  specified i n  terms - 

spectrum N(f). 

The solution f o r  W ( f )  has been demonstrated f o r  the bandlimited 

case where the available (double-sided) bandwidth i s  less than twice the 

pulsing ra te  of A pulses per second. We elaborate upon t h i s  solution to 

show the trade-offs between bandwidth, timing er rors  and phase e r rors  i n  

a PAM-AM system. 

T 
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PART I1 SUMMARIES OF SCIENTIFIC REPORTS 

CHAPTER I 

SCIENTIFIC REPORT NO. 1 

PULSE SHAPING BY MANIPULATING TRANSFORM ZEROS 

J. B. Campbell 

D. W. Fermental 
N. T. Tsao-Wu 

S. He Chmg 

The treatments of pulse design problems i n  recent papers d i r ec t ly  

o r  indirect ly  make use of Fourier transform properties established i n  t h e  

theory of ent i re  functions. 

an en t i r e  function of exponential type’, the Fourier transform of a pulse 

possesses and i s  characterized by an i n f i n i t e  set of zeros i n  the complex 

frequency plane.* 

zeros, as indicated i n  recent papers. 

The basic property used i s  t h a t  since it is  

Pulse design can be effected by operations on these 

The possibi l i ty  of a transform zero canceling a system function pole, 

w a s  used by Gerst and Diamond3 t o  design s ignal  inputs t o  a system t o  yield 

pulse outputs fo r  the elimination of intersymbol interference. 

discussed the following problem. Given a time-invariant, l i nea r  system, find 

an input such t h a t  t h e  output i s  a pulse. 

element (and i n  cer ta in  cases, transmission l i ne  type) systems, it i s  

possible t o  have both input and output as pulses, and tha t  t h i s  i s  effected 

when the poles of the system f’unction are canceled by zeros of the transform 

of a pulse. 

show that differentiable pulses can be valuable design tools.  

They have 

They show that i n  the lumped- 

In  t h e i r  equivalent time-domain solution, Gerst and Diamond 
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In  an extension by Campbell4 of t h e  Gerst and Diamond work, d i f fe r -  

entiable pulses are  used t o  design pulse inputs t h a t  correspond t o  a set 

of orthogonal pulse outputs of a given system. 

As pointed out by Hofstetter5 and Walther 6 , a pulse i s  uniquely 

determined by its energy density spectrum i f  the zeros of the spectrum 

function a l l  l i e  on the  real axis of the  complex frequency plane. Given 

a pulse whose Fourier transform has zeros i n  the upper-half (low6r-half) 

frequency plane, Hofstetter and Walther have sham t h a t  "flipping" of 

zeros t o  the luwer-half (upper-half) plane can be used t o  find a set of 

pulses w i t h  the  same autocorrelation function (or energy density spectrum). 

I n  solving a related problem7 Fermental has shown tha t ,  under cer ta in  

conditions, transform zeros can be "flipped" t o  obtain a set of orthogonal 

pulses w i t h  the same energy density spectrum. 

This report presents an investigation in to  the effect produced on 

a pulse by manipulating i t s  transform zeros. 

t ions  f o r  the fo lming  purposes are discussed. 

zeros, a pulse i s  shaped t o  have more derivatives. The zero removal process 

i s  extended t o  yield an infinitely-differentiable pulse. 

deletion and shift ing,  a palse i s  m d e  t o  approximate a chosen waveform. 

(3) By zero deletion and shift ing,  a pulse i s  shaped t o  have: 

specified amplitude density spectrum (e.g., rectangular-pulse-like); o r  

(b) a specified energy density spectrum (e.g., complementary t o  "coloredt1 

noise of the l/f type). 

I n  particular,  zero mnipula- 

(1) By removing transform 

(2)  By zero 

(a) a 
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CHAPTER I1 

S C I E N T I F I C  REPORT NO. 2 

PROPERTIES AND A P P U C A T I O N S  OF AUTOCORREUTION-INVARIANT FUNCTIONS 

R. A. Gonsalves 

T h i s  work resulted as a by-product of a research e f f o r t  t o  f ind a s e t  

of orthogonal t i m e  W c t i o n s ,  non-zero only f o r  t > 0, which have the 

same autocorrelation function. 

whose first f e w  members are 

Such a s e t  is the set of Laguerre functions 

Each member of this set has an autocorrelation function which is  

e -151 . 
Note that the first member of the set of Laguerre functions has exactly 

the same form as i t s  autocorrelation function f o r  t (or T) > 0. Such a 

time function fN(t)  whose autocormhtion function is fN((T()  is called 

Autocorrelation-Invariant (A-I);  that is, fN(t) is invariant under the 

operation of autocorrelation. The study of the c l a s s  of A - I  f’unctions 

i s  the subject of th i s  report. 



It i s  shown tha t  A - I  functions have several properties of i n t e re s t  t o  

the communications engineer. These include: 

(a) f N ( t >  i s  the r ight  half of an ACF, providing a simple 

sufficiency test f o r  a specified function t o  be an ACF. 

Associated w i t h  f N ( t )  and generated i n  the manner of 

the Laguerre functions, is  an orthogonal set whose 

members are useful as basis functions i n  the design 

of orthogonal signall ing waveforms with specified 

(b) 

ACF S* 

(c) f N ( t H )  i s  the degenerate kernel of an in tegra l  equation 

whose N+1 eigenvalues are real and unity i n  magnitude, 

and whose eigenfunctions span %, a finite-dimensional 

subspace of Hilbert  space. This property allows several 

resu l t s  i n  the characterization of time functions i n &  

The Laguerre and kgendre functions of the first kind, two s e t s  Of 

A - I  f’unctions, are defined and discussed. 

of any member of the former set, under time translat ions,  i s  presented, 

giving r i s e  t o  a conjecture concerning al l  A-I f’unctions. 

A curious orthogonality property 
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C-R I11 

SCIEWIlIFIC REPORT NO. 3 

ORTHOGOAWL S I G i W I U N G  PULSES WITH THE SAME AUTWOFZELATION 

Denis W. Fermental 

A problem of some in te res t  t o  communication engineers i s  the simultaneous 

transmission of orthogonal pulses having the same duration w i t h  independent 

detection at  a receiver by matched f i l t e r i n g  and sampling. A question tha t  

arises natural ly  i n  t h i s  connection i s ,  how closely can such pulses be alike 

i n  bandwidth? 

can be constructed with ident ica l  bandwidths. 

have the same energy density spectrum. 

l i nea r  combinations of some suff ic ient ly  different iable  pulse and i t s  deriva- 

t i v e s  t o  generate the required waveforms. 

f o r  the coefficients of these l inea r  combinations and shows t h a t  the r e s t r i c -  

t ions  on the suf f ic ien t ly  differentiable pulse may be expressed i n  terms of 

the moments of i t s  energy density spectrum. 

I n  t h i s  report a method i s  developed by which orthogonal. pulses 

More precisely, these pulses 

The technique consists of forming 

The report determines c r i t e r i a  

To clarif'y the approach which is adopted, we examine the following 

special case. 

fo r  any real number C%, the pulses 

Let  the pulse g ( t )  have a bounded derivative g'(t). Then 

have the same energy density spectrum, (Df(UJ) which i s  
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where Qg(u) is the energy density spectrum of g( t ) .  

For fo( t )  and f l ( t )  t o  be orthogonal we must a l so  1'E!quire t h a t  

By ParseVal's theorem 

and 

Then f o r  orthogonality 

where uo and u2 are the zeroth order m m n t  and the second order moment 

of Og(W). The two pulses 

are, therefore, orthogonal and have the same autocorn la t ion  f'unction. 

H e r e  a was determined by the moments of the given Qg(w). 

however, choose an appropriate a and thus place a r e s t r a i n t  on the maments 

We could, 
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i f  some Qg(u) t o  be constructed later. 

i n  t h i s  report. 

This is the approach tha t  i s  adopted 

By taking in to  consideration the properties of suff ic ient ly  differ- 

entiable pulses (time-limited or  f i n i t e  support) and making use of the method 

of moments of the energy spectrum, the reports shows t h a t  it is possible t o  

construct a set of real pulses w i t h  t h ree  properties: 

(a) 

(b) 

(c)  

the pulses have the sane support, 

the pulses are mutually orthogonal over t h i s  support, 

the pulses have the same autocorrelation function, or  

equivalently, the same energy density spectrum. 
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ABSTRACT OF SCIE3 iTIFIC  REPoIiT NO. 4 

ON UNEAR PRODUCT CODES AM) THEIR DUAIS 

L. J. Weng 

I n  t h i s  report the value of studying t h e  tensor product of l inear  

codes, the i terated codes and the error-locating codes, i s  demonstrated. 

The pertinent problems concerning these product codes are outlined. 

One of the important problems is  t o  relate both the code space and 

i ts  null space of a tensor product code t o  the code spaces and null spaces 

of the component codes of the product code. 

area i s  given i n  the report. 

approach is  i l lustrated.  

developed. 

gives a special interpretation. 

structure is  thus obtained. 

product space involving the t ranslat ion of fields is also treated. I n  

t h i s  case the elements of two original  component codes and elements Of 

the resul tant  product code are expressed in different  fields. 

shows tha t  this will give us  more e f f i c i en t  error-locating codes. 

no advantage w i l l  be obtained by constructing iterated codes through 

fields translation. 

An extensive study i n  t h i s  

F i r s t  a.brute-force and tedious direct 

A more meaningful algebraic approach is then 

The resu l t  can be expressed i n  various forms; each of them 

A better insight of the product code 

The detelmination of n u l l  space of a tensor 

The result 

But 

The problem of encoding and decoding of tensor product codes are 

considered i n  detail.  

of encoding and decoding of a product code i n t o  those of i t s  component 

Decomposition of the procedure and implementation 
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codes i s  emphasized. 

t o  a l l  product codes are first studied. 

t o  the product codes whose component codes are cyclic. 

t a t ion  of cyclic codes can be achieved easily by l inear  shift-registers 

and the encoder can be converted t o  t h a t  of i t s  dual code by varying the 

input and output positions, the  encoder of an iterated code or  an error-  

locating code can possess four operating modes by converting one, one, o r  

both of i t s  component codes t o  t he i r  respectively dual codes. 

The general encoding and decoding schemes applicable 

Then special  a t tent ion i s  given 

Since the implemen- 

Furthermore, the report shows that  the encoding c i r cu i t  of an iterated 

code and that of an error-locating code are very similar i f  their component 

codes a?x the same. Therefore, it is  possible t o  implement an eight mode 

encoder -- 4 high-redundancy iterated codes and 4 low-redundancy codes. 

The encoder can be converted t o  a synd,rome ca lcuh to r  f o r  any of the eight 

product codes. 

which is capable of correcting a large fraction of all correctable errors  

of a systematic cyclic code, i s  investigated. It is suggested that it be 

used either as a part of the correction-detection scheme o r  i n  combination 

with an auxiliary scheme t o  a t t a i n  Full error correction capability. 

the minirmUn distances of both i te ra ted  codes and error-locating codes, and 

sui table  communication channels f o r  emplaying such codes, are discussed. 

A s i m p l e  decoding scheme, namely penrmtation decoding, 

Finally, 
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CHAPTER v 

SCIENTIFIC REPORT NO. 5 

WIEiMENPATION AND PERFORMANCE OF THE MAXIMUM-IXKEXIHOOD 
DETECTOR I N  A CHANNEL W H  ImRsyMBoL INTERFERENCE 

R. A. Gonsalves 

H i g h  speed data carmrmnication vla PAM requires the sirmrltaneaus control 

of intersymbol interference (ISI) and random noise. 

an expl ic i t  structure f o r  the maximum-likelihood (ML) receiver which 

accomplishes this  purpose. 

minimizes the per-symbol probability of error,  Pee 

contains elements of the optimum linear Rceiver  and the decision feedback 

(or "tail cancellation") receiver. 

I n  t h i s  report we give 

The receiver is optimum i n  the sense that it 

The non-linear structure 

We assume independent, binary (21) data, a known signall ing pulse 

shape s ( t )  which lasts fo r  two bauds (givlng r i s e  t o  l imited ISI) ,  stationary 

additive, white (power spectral  density = N0/2), Gaussian noise, and perfect 

synchronism between transmitter and receiver. 

can be removed by more complex analyses; perhaps the most bothersome, the 

assumption of l imited ISI, i s  removed h e x  only by a heuris t ic  argument. 

Several of these assumptions 

The ML receiver processes as much of the received data y ( t )  as i s  

available, producing a s t a t i s t i c  xk t o  decide on the polar i ty  O f  the kth b i t ,  

xk is  given by 

& = Ak + ZcAk-1 + ZEAk-2 + *.*I) 

+ zcAk+l + zcAk+2 + ***) I  2 
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where Ak is  a correlation s t a t i s t i c  given by 

and R = -kh(t) s(t-irIl) dt. 
NO 

These equations are implemented i n  Fig. 1. The input-output character is t ic  

of the non-linear device defined by Equation (3 )  is  sham i n  Fig. 2 f o r  

several  values of the IS1 parameter R. 

Fig. 1 points up the similarity between the ML receiver and the 

optimum l inea r  receiver tha t  is, a matched f i l t e r  followed by a tapped 

delay line.  

ra ther  than a linear sum of the t ap  outputs. 

In t h i s  structure,  however, the useful output i s  a non-linear 

Upper and lower bounds on Pe have been set and a sample curve is  

presented showlng Pe versus SNR. 

favorably with several other detection schemes at all SNR. 

This curve shows that the detector compares 
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Y(t) ). 

I U  I I 

F i l t e r  Matched 
t o  4/N0 s ( t )  I 

Unit *k+l 
De l a y  = , 

Z 

Fig. 1 The ML Receiver 

7 t Output' zcx') R = -2 

input, x 2' 
Fig. 2 Non-Linear Characterist ics of Z[xl 
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CHAPTER V I  

C-CATION THEOW GROUP REPORT NO. 6 

OPTIMUM INTERPOLATION OF SAMPUD FUNCTIONS 

M. Schetzen 

A study of optimum sampling and interpolation of random processes w a s  

begun under t h i s  contract. 

study, optimum l inear  interpolation, i s  presented i n  t h i s  report. 

The resu l t s  of the f i r s t  par t  of the i n i t i a l  

The problem derives i t s  importance from the f a c t  tha t  many information 

processing systems sample the  data being processed. The desired function 

must then be reconstructed from the sampled data. Examples of such systems 

used i n  communications are pulse and del ta  modulators; d i g i t a l  systems also 

require the data being processed t o  be sampled. 

structed by means of a law-pass R-C filter; sometimes a zero- or  first- 

order hold c i r cu i t  i s  used. 

closely approximates the sampled function i f  the sampling ra te  i s  large 

as compared with the bandwidth of the function being sampled and i f  the 

sampled data i s  accurate so t n a t  it is not corrupted by very much noise. 

For a given e r ro r  cr i ter ion,  it i s  clear  tha t  these interpolation proce- 

dures are generally not optimum. 

Often, the data i s  recon- 

The waveform reconstructed by these techniques 

I n  the ideal case of a time fbnction f (t ) whose spectrum i s  zero fo r  

CD > Mf,, it is known that it can be reconstructed w i t h  zero e r ro r  from 

a set of equally spaced sampled data i n  which the sampling rate, - , is  1 
T1 

-77- 
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greater than 2f,. The interpolation i s  

M 

i n  which T1 is  the spacing between samples. 

This interpolation fonmila is  not physically realizable since the 

interpolated value of f ( t )  depends upon the samples f(nT) f o r  nT > t. 

By increasing the sampling rate so that it i s  greater than 6fmt f ( t )  can 

be interpolated i n  terms of only the samples f(nT) fo r  nT < to2 In all 

pract ical  cases, however, a message is  not completely determined by i t s  

own past. 

would it be possible t o  introduce new informatton. 

m c t i o n s  are  If a random function, 

f (t 1, is  not singular, then it cannot be interpolate2 w i t h  zero mean- 

s ~ u a r e  e r ro r  on the basis of i t s  past samples, f(nT) f o r  nT S t. The 

problem of determining the optimum causal interpolation function and the 

If it were so determined, then at no peri6d i n  the message 

Thus bandlimited 

i n  a cer tain sense i1siwlar11.3 

m i n i m  obtainable e r ror  thus i s  significant. 

For periodic sampling, expl ic i t  expressions of the optimum causal 

l inear  interpolation f i l t e r  f o r  the interpolation of corrupted samples 

are presented i n  the report. The c r i te r ion  used was that the IUean-SqUare 

er ror  be a m i n i m .  

e r ror  are obtained. 

In  addition, expressions f o r  the mini- mean-square 

These results, which are believed t o  be new, an? 

i l lus t ra ted  by some specific examples of prac t ica l  importance. 

t o  study the properties of the waveform tha t  contribute t o  the error,  

I n  o d e r  

simple bounds of the irremovable e r ro r  were obtained. 

the important case i n  which the parer density spectrum of the random Process 

As an example, for  
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is a s t r i c t l y  monotonically decreasing function of frequency, it i s  shown 

that the irremuvable mean-square er ror  lies between one and two times the 

power i n  the random process above one-half the sampling frequency. This 

bound implies that, i n  choosing a sampling frequency, it is the parer i n  

the "tails" of the spectrum and not the amplitude of the spectrum tha t  

shuuld be considered. 

The second par t  of t h i s  i n i t i a l  study, optimum pre-emphasis, i s  i n  

progress. I n  addition t o  optimum pre-emphasis systems, the minimum e r ro r  

as a function of the average sampling rate f o r  various e f f ic ien t  sampling 

procedures w i l l  be studied. 
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C-CATION THEOHY GROUP REPORT NO. 7 

A s m  OF ADAPTIVE m m  COMPRESSION* 

L. E h m  

The performance character is t ics  of four adaptive bandwidth compression 

techniques - the floating-aperture predictor, the zero-order interpolator, 

the fan interpolator and the maximum length interpolator - are found i n  

analytic form. 

output samples are, f o r  a floating-aperture predictor w i t h  vector Markov 

It is  shown t h a t  the mean and mean-square time between 

process input signals, the solutions of two in tegra l  equations whose 

kernels are the conditional probability density function of the input 

process, while f o r  a zero-order interpolator and a maximum length 

interpolator they can be expressed as space-time integrals  of the input 

signal 's  range and adjusted range probability density function. The mean 

and mean-square output times of the fan interpolator 8113 expressed as the 

sum of iterated integrals  of the signal's conditional probability density 

f'unction over the aperture space. 

The relation between peak e r ro r  and W er ror  i s  derived f o r  each 

compression algorithm. 

algorithm i s  found f o r  the case when the input signal i s  a f i rs t -order  

The transmission bandwidth required f o r  each 

Gauss-Markov process. This bandwidth i s  compared with tha t  required f o r  

* This report i s  based on a Ph.D. thesis writ ten under a National Science 
Foundation Fellowship. 
Group while Preparing the thesis. 

The writer was affiliated with the Communication Theory 
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uniformly sampled data which is reconstructed by means of the opt imum t i m e -  

invariant linear interpolator filter. 

requires approximately the same bandwidth as does the optimum f i l t e r ,  w h i l e  

the floating-aperture predictor requires about 2.5 times the bandwidth. The 

zero-order interpolator falls mi- between the floating-aperture predictor 

and the fan interpolator in performance. The max im length interpolator i s  

superior only t o  the floating-aperture predictor; it is  surmised that t h i s  

behavior i s  a character is t ic  of d i s jo in t  interpolators,  i n  general. 

It i s  sham that the fan interpolator 
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